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Abstract: A initial-boundary value problem for some nonlinear wave equation with damping and source terms
utt + Au + ut + aAut = b|u|q−1u in a bounded domain is studied, where A = (−∆)m, m ≥ 1 is a nature
number, a ≥ 0, b > 0 and q > 1 are real numbers. The existence of global solutions for this problem is proved by
constructing the stable sets, and show the exponential decay estimate of global solutions as time goes to infinity by
applying the multiplier method. Meanwhile, under the conditions of the nonnegative initial energy and a = 0, it is
showed that the solution blows up in finite time.
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1 Introduction
In this paper we consider the existence and exponen-
tial decay estimate of global solutions for the initial-
boundary problem of nonlinear wave equation with
nonlinear damping and source terms

utt + Au + ut + aAut = b|u|q−1u, x ∈ Ω, t > 0,
(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

Dαu(x, t) = 0, |α| ≤ m−1, x ∈ ∂Ω, t ≥ 0, (1.3)

where A = (−∆)m, m ≥ 1 is a nature number, a ≥
0, b > 0 and q > 1 are real numbers, Ω is a bounded
domain of RN with smooth boundary ∂Ω, ∆ is the
Laplace operator, and α = (α1, α2, · · · , αN ), |α| =
N∑

i=1

|αi|, Dα =
N∏

i=1

∂αi

∂xαi
i

, x = (x1, x2, · · · , xN ).

For the case m = 1, the existence and uniqueness,
as well as decay estimates, of global solutions and
blow-up of solutions for the initial-boundary value
problem or Cauchy problem of the equation (1.1) have
been investigated by many people through various ap-
proaches and assumptive conditions [1, 4, 5, 7, 8, 15,
17, 22, 23].

M.Nakao [12] has used Galerkin method to
present the existence and uniqueness of the bounded
solutions, periodic and almost periodic solutions to
the problem (1.1)-(1.3) as the dissipative term is a
linear function aut. M.Nakao and H.Kuwahara [13]
studied decay estimates of global solutions to the

problem (1.1)-(1.3) by using a difference inequal-
ity when the dissipative term is a degenerate case
a(x)ut. In absence of dissipative term in equa-
tion (1.1), P.Brenner and W.Von Wahl [2] proved
the existence and uniqueness of classical solutions
for the initial-boundary problem of equation (1.1) in
Hilbert space. H.Pecher [14] investigated the exis-
tence and uniqueness of Cauchy problem for (1.1) by
use of the potential well method due to L.Payne and
D.H.Sattinger [15] and D.H.Sattinger [16].

When A = (−∆)m is replaced by P−Laplace
operator −div(|∇u|m∇u), S.M.Messaoudi [10] im-
prove the result of reference [19] by giving more pre-
cise decay rates. In particular, he shows that for
m = 0, the decay is exponential. His technique of
proof relies on the combination of the perturbed en-
ergy and the potential well methods.

When a = 0, for the semilinear higher order wave
equation (1.1), B.X.Wang [18] show that the scatter-
ing operators map a band in Hs into Hs if the non-
linearities have critical or subcritical powers in Hs.
C.X.Miao [11] obtain the scattering theory at low en-
ergy using time-space estimates and nonlinear esti-
mates. Meanwhile, he also give the global existence
and uniqueness of solutions under the condition of low
energy.

Recently, Y.J.Ye [20] dealt with the existence and
asymptotic behavior of global solutions for (1.1)-(1.3)
with nonlinear dissipative term. At the same time,
A.B.Aliev and B.H.Lichaei [3] consider the Cauchy
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problem for equation (1.1), and they found the exis-
tence and nonexistence criteria of global solutions us-
ing the Lp − Lq estimate for the corresponding linear
problem and also established the asymptotic behavior
of solutions and their derivatives as t → +∞.

The proof of global existence for problem (1.1)-
(1.3) is based on the use of the potential well theory
[15, 16]. And we study the exponential decay esti-
mate of global solutions by applying the lemma of
V.Komornik [6]. Meanwhile, under suitable condi-
tions on the nonnegative initial energy and without
strong dissipative term (i.e. a = 0), we obtain the
blow-up result.

We adopt the usual notation and convention. Let
Hm(Ω) denote the Sobolev space with the usual
scalar products and norm. Meanwhile, Hm

0 (Ω) de-
notes the closure in Hm(Ω) of C∞

0 (Ω). For simplicity
of notation, hereafter we denote by ‖·‖r the Lebesgue
space Lr(Ω) norm and ‖ · ‖ denotes L2(Ω) norm, we
write equivalent norm ‖A 1

2 ·‖ instead of Hm
0 (Ω) norm

‖ · ‖Hm
0 (Ω). Moreover, Ci (i = 1, 2, 3, · · ·) denote var-

ious positive constants which depend on the known
constants and may be difference at each appearance.

This paper is organized as follows: In the next
section, we will study the existence of global solutions
of problem (1.1)-(1.3). Then in section 3, we are de-
voted to the proof of exponential decay estimate. Then
in section 4, we are devoted to the proof of global
nonexistence of solution for the problem (1.1)-(1.3)
without strong dissipative term (i.e. a = 0).

We conclude this introduction by stating a local
existence result, which can be obtained by a similar
way as down in [9, 19].

Theorem 1.1 Suppose that p and q satisfy

1 < q < +∞ if N ≤ 2m;

1 < q ≤ N + 2m

N − 2m
if N > 2m,

(1.4)

and (u0, u1) ∈ Hm
0 (Ω) × L2(Ω), then there exists

T > 0 such that the problem (1.1)-(1.3) has a unique
local solution u(t) in the class

u ∈ C([0, T );Hm
0 (Ω)),

ut ∈ C([0, T );L2(Ω)) ∩ L2([0, T );H1
0 (Ω)).

(1.5)

2 The Global Existence
In order to state and prove our main results, we first
define the following functionals

I(u) = I(u(t)) = ‖A 1
2 u(t)‖2 − b‖u(t)‖q+1

q+1,

J(u) = J(u(t)) =
1
2
‖A 1

2 u(t)‖2 − b

q + 1
‖u(t)‖q+1

q+1,

for u ∈ Hm
0 (Ω). Then, for the problem (1.1)-(1.3),

we will be able to establish the stability of the set

W = {u ∈ Hm
0 (Ω), I(u) > 0} ∪ {0}.

We define the total energy related to (1.1) by

E(u(t)) =

=
1
2
‖ut(t)‖2 +

1
2
‖A 1

2 u(t)‖2 − b

q + 1
‖u(t)‖q+1

q+1

=
1
2
‖ut(t)‖2 + J(u(t))

for u ∈ Hm
0 (Ω), t ≥ 0, and E(u(0)) = 1

2‖u1‖2 +
J(u0) is the total energy of the initial data.

The following lemmas play an important role to
the proof of the global existence of solution for the
problem (1.1)-(1.3).

Lemma 2.1 Let r be a real number with 2 ≤ r <
+∞ if N ≤ 2m and 2 ≤ r ≤ 2N

N−2m if N > 2m.
Then there is a constant C depending on Ω and r such
that

‖u‖r ≤ C‖A 1
2 u‖, ∀u ∈ Hm

0 (Ω).

Lemma 2.2 Let u(t) be a solution of the problem
(1.1)-(1.3). Then E(u(t)) is a nonincreasing function
for t > 0 and

d

dt
E(u(t)) = −‖ut‖2 − a‖A 1

2 ut(t)‖2. (2.1)

Proof By multiplying equation (1.1) by ut and
integrating over Ω, we get

d

dt
E(u(t)) = −‖ut‖2 − a‖A 1

2 ut(t)‖2 ≤ 0.

Therefore, E(u(t)) is a nonincreasing function of t.
Lemma 2.3 Suppose that (1.4) holds, If u0 ∈

W,u1 ∈ L2(Ω) such that

θ = bCq+1
(

2(q + 1)
q − 1

E(u0)
) q−1

2

< 1, (2.2)

then u(t) ∈ W , for each t ∈ [0, T ).
Proof Assume that there exists a number t∗ ∈

[0, T ) such that u(t) ∈ W on [0, t∗) and u(t∗) 6∈ W .
Then we have

I(u(t∗)) ≤ 0, u(t∗) 6= 0. (2.3)
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Since u(t) ∈ W on [0, t∗), so it holds that

J(u(t)) =
1
2
‖A 1

2 u(t)‖2 − b

q + 1
‖u(t)‖q+1

q+1

>
1
2
‖A 1

2 u(t)‖2 − 1
q + 1

‖A 1
2 u(t)‖2

=
q − 1

2(q + 1)
‖A 1

2 u(t)‖2,

(2.4)
it follows from I(u(t∗)) = 0 that

J(u(t∗)) =
1
2
‖A 1

2 u(t∗)‖2 − b

q + 1
‖u(t∗)‖q+1

q+1

=
q − 1

2(q + 1)
‖A 1

2 u(t∗)‖2.

(2.5)
Therefore, we have from (2.4) and (2.5) that

‖A 1
2 u(t)‖2 ≤ 2(q + 1)

q − 1
J(u(t))

≤ 2(q + 1)
q − 1

E(u(t)) ≤ 2(q + 1)
q − 1

E(u0),
(2.6)

for ∀t ∈ [0, t∗].
By exploiting Lemma 2.1, (2.2) and (2.6), we eas-

ily arrive at

b‖u‖q+1
q+1 ≤ bCq+1‖A 1

2 u‖q+1

= bCq+1‖A 1
2 u‖q−1‖A 1

2 u‖2

≤ bCq+1
(

2(q + 1)
q − 1

E(u(0))
) q−1

2 ‖A 1
2 u‖2

< ‖A 1
2 u‖2,

(2.7)
for all t ∈ [0, t∗]. Therefore, we obtain

I(u(t∗)) = ‖A 1
2 u(t∗)‖2 − b‖u(t∗)‖q+1

q+1 > 0, (2.8)

which contradicts (2.3). Thus, we conclude that
u(t) ∈ W on [0, T ).

Theorem 2.1 Assume that (1.5) holds, u(t) is a
local solution of problem (1.1)-(1.3) which is obtained
in Theorem 1.1. If u0 ∈ W, u1 ∈ L2(Ω) satisfy (2.2),
then the solution u(t) is a global solution of problem
(1.1)-(1.3).

Proof It suffices to show that ‖ut(t)‖2 +
‖A 1

2 u(t)‖2 is bounded independently of t.
Under the hypotheses in Theorem 2.1, we get

from Lemma 2.3 that u(t) ∈ W on [0, T ). So the
formula (2.6) in Lemma 2.3 holds on [0, T ).

We obtain from (2.6) that

E(u0) ≥ E(u(t)) =
1
2
‖ut(t)‖2 + J(u(t))

≥ 1
2
‖ut(t)‖2 +

q − 1
2(q + 1)

‖A 1
2 u‖2

≥ q − 1
2(q + 1)

(‖ut(t)‖2 + ‖A 1
2 u‖2).

(2.9)
Therefore

‖ut(t)‖2 + ‖A 1
2 u‖2 ≤ 2(q + 1)

q − 1
E(u0) < +∞.

The above inequality and the continuation principle
lead to the global existence of the solution u(x, t) for
problem (1.1)-(1.3).

3 Exponential Decay Estimate
The following lemma play an important role in study-
ing the decay estimate of global solutions for the prob-
lem (1.1)-(1.3).

Lemma 3.1[6] Let F : R+ → R+ be a nonin-
creasing function and assume that there is a constant
L > 0 such that

∫ +∞

S
F (t)dt ≤ LF (S), 0 ≤ S < +∞,

then F (t) ≤ F (0)e1− t
L , ∀t ≥ 0.

Theorem 3.1 If the hypotheses in Theorem 2.2
are valid, then the global solutions of problem (1.1)-
(1.3) have the following exponential decay estimate

E(t) ≤ E(0)e1− t
M ,

where M > 0 is a constant.
Proof Let E(t) = E(u(t)), if we can prove that

the energy of the global solution satisfies the estimate
∫ T

S
E(t)dt ≤ ME(S)

for all 0 ≤ S < T < +∞, then Theorem 3.1 will be
proved by Lemma 3.1.

Multiplying by u on both sides of the equation
(1.1) and integrating over Ω× [S, T ], we obtain that

0 =
∫ T

S
(‖ut‖2 + ‖A 1

2 u‖2 − 2b

q + 1
‖u‖q+1

q+1)dt

+
∫ T

S

∫

Ω
uutdxdt−

∫ T

S

∫

Ω
[2|ut|2 − aA

1
2 utA

1
2 u]dxdt

+
[ ∫

Ω
uutdx

]T

S
+

(
2

q + 1
− 1

)
b

∫ T

S
‖u‖q+1

q+1dt.

(3.1)
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We get from (2.7) and (2.6) that
(

1− 2
q + 1

)
b‖u‖q+1

q+1 ≤
(q − 1)θ
q + 1

‖A 1
2 u‖2

≤ (q − 1)θ
q + 1

· 2(q + 1)
q − 1

E(t) = 2θE(t),

(3.2)
It follows from (2.9) that

∣∣∣∣∣−
[ ∫

Ω
uutdx

]T

S

∣∣∣∣∣

=

∣∣∣∣∣
∫

Ω
u(T )ut(T )dx−

∫

Ω
u(S)ut(S)dx

∣∣∣∣∣

≤
∫

Ω
|u(T )ut(T )|dx +

∫

Ω
|u(S)ut(S)|dx

≤ 1
2
(‖u(T )‖2 + ‖ut(T )‖2) +

1
2
(‖u(S)‖2 + ‖ut(S)‖2)

≤
[
C2

2
‖A 1

2 u(T )‖2 +
1
2
‖ut(T )‖2

]

+
[
C2

2
‖A 1

2 u(S)‖2 +
1
2
‖ut(S)‖2

]

≤ max
(

(q + 1)C2

q − 1
, 1

)
[E(T ) + E(S)] ≤ ME(S).

(3.3)
Therefore we conclude from (3.1), (3.2) and (3.3) that

2(1− θ)
∫ T

S
E(t)dt

≤
∫ T

S

∫

Ω
[2|ut|2 − aA

1
2 utA

1
2 u]dxdt

+
∫ T

S

∫

Ω
uutdxdt + ME(S).

(3.4)

We get from Lemma 2.2 that

2
∫ T

S

∫

Ω
|ut|2dxdt = 2

∫ T

S
‖ut‖2dt

= −2(E(T )− E(S)) ≤ 2E(S).
(3.5)

It follows from Young’s inequality Lemma 2.1,
Lemma 2.2 and (2.9) that

∫ T

S

∫

Ω
uutdxdt ≤

∫ T

S
(ε1‖u‖2 + M(ε1)‖ut‖2)dt

≤
∫ T

S
(ε1C

2‖A 1
2 u(t)‖2 + M(ε1)‖ut(t)‖2)dt

≤ 2(q + 1)ε1

q − 1

∫ T

S
E(t)dt + M(ε1)(E(S)− E(T ))

≤ 2(q + 1)ε1

q − 1

∫ T

S
E(t)dt + M(ε1)E(S).

(3.6)

where M(ε1) is a positive constant depending on ε1.
We obtain from Young’s inequality, Lemma 2.1,

Lemma 2.2 and (2.9) that

−a

∫ T

S

∫

Ω
A

1
2 uA

1
2 utdxdt

≤ a

∫ T

S
(ε2‖A

1
2 u‖2 + M(ε2)‖A

1
2 ut‖2)dt

≤ 2a(q + 1)ε2

q − 1

∫ T

S
E(t)dt + M(ε2)(E(S)− E(T ))

≤ 2a(q + 1)ε2

q − 1

∫ T

S
E(t)dt + M(ε2)E(S).

(3.7)
where M(ε2) is a positive constant depending on ε2.

Choosing ε1 and ε2 small enough such that

q + 1
q − 1

(ε1 + aε2) + θ < 1,

then, substituting (3.5), (3.6) and (3.7) into (3.4), we
get ∫ T

S
E(t)dt ≤ ME(S). (3.8)

Let T → +∞, then we have from (3.8) that
∫ +∞

S
E(t)dt ≤ ME(S). (3.9)

Thus, we obtain from (3.9) and Lemma 3.1 that

E(t) ≤ E(0)e1− t
M , t ∈ [0,+∞). (3.10)

4 Blow-up of Solution
In this section, we shall study the blow-up property
of solution for the problem (1.1)(1.3) without strong
dissipative term (i.e. a = 0). For this purpose, we
need the following Lemma.

Lemma 4.1 [21] Suppose that Ψ(t) is a twice
continuously differential satisfying

Ψ′′(t) + Ψ′(t) ≥ C0Ψ1+α, Ψ(0) > 0, Ψ′′(0) ≥ 0,
(4.1)

for t > 0, where C0 > 0 and α > 0 are constants.
Then Ψ(t) blows up in finite time.

The result of this section reads as follows:
Theorem 4.1 Let the assumptions of Theorem

1.1 hold. Then the local solution for problem (1.1)
-(1.3) with initial conditions satisfying

E(0) ≤ 0,

∫

Ω
u0u1dx ≥ 0 (4.2)

blows up in finite time. In other words, there exists T ∗
such that lim

t→T ∗
‖u‖2 = +∞.
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Proof We define the following function

Ψ(t) =
1
2

∫

Ω
|u(t)|2dx. (4.3)

Then we have

Ψ′(t) =
∫

Ω
u(t)ut(t)dx,

Ψ′′(t) = ‖ut(t)‖2 +
∫

Ω
uuttdx.

(4.4)

We obtain from (1.1) and (4.4) that

Ψ′′(t) = ‖ut(t)‖2 − ‖A 1
2 u(t)‖2

− ∫
Ω uutdx + b‖u(t)‖q+1

q+1.

(4.5)

We conclude from (4.4) and (4.5) that

Ψ′′(t)+Ψ′(t) = ‖ut(t)‖2−1
2
‖A 1

2 u(t)‖2+b‖u(t)‖q+1
q+1.

(4.6)
It follows from the definition of E(t), Lemma 2.1,

(4.2) and (4.6) that

Ψ′′(t) + Ψ′(t)

= −E(t) +
3
2
‖ut(t)‖2 +

qb

q + 1
‖u(t)‖q+1

q+1

≥ −E(0) +
qb

q + 1
‖u(t)‖q+1

q+1 ≥
qb

q + 1
‖u(t)‖q+1

q+1.

(4.7)
By Hölder inequality, we have

∫

Ω
|u|2dx ≤ |Ω| q−1

q+1 ‖u‖2
q+1,

where |Ω| is the measures of the bounded domain.
Therefore,

‖u‖q+1
q+1 ≥ 2

q+1
2 |Ω| 1−q

q+1 Ψ
q+1
2 (t). (4.8)

We obtained from (4.7) and (4.8) that

Ψ′′(t) + Ψ′(t) ≥ C0Ψ1+α(t), (4.9)

where C0 = 2
q+1
2

qb
q+1 |Ω|

1−q
q+1 > 0, α = q−1

2 > 0.

Thus, we prove that the solution blows up in the sense
of L2 norm.

5 Conclusion
In this paper, the initial boundary value problem for
a class of nonlinearly damped Petrovsky equation in
a bounded domain is considered. At first, the exis-
tence of global solutions which is not related to the
parameters p and r is proved by constructing a sta-
ble set in H2

0 (Ω). Moreover, we have the other global
existence result which is related to parameters p and
r, i.e. p ≤ r. Secondly, we obtain the energy de-
cay estimate through the use of an important lemma
of V.Komornik. At last, under the conditions of the
positive initial energy, it is proved that the solution
blows up in the finite time and the lifespan estimates
of solutions are also given.
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Cauchy-und anfangs-randwertproble-me micht-
linear wellengleichungen, Math. Z., 140(1974),
263-279.

[15] L.E.Payne and D.H.Sattinger, Saddle points and
instability of nonlinear hyperbolic equations, Is-
rael J. Math., 22(1975), 273-303.

[16] D.H. Sattinger, On global solutions for nonlin-
ear hyperbolic equations, Arch. Rational Mech.
Anal., 30(1968), 148-172.

[17] E.Vitiliaro, Global nonexistence theorems for a
class of evolution equations with dissipation,
Arch. Rational Mech. Anal., 149(1999), 155-
182.

[18] B.X.Wang, Nonlinear scattering theory for a
class of wave equations in Hs, J. Math. Anal.
Appl., 296 (2004), 74-96.

[19] Yang Z, Existence and asymptotic behavior of
solutions for a class of quasilinear evolution
equations with nonlinear damping and source
terms, Math. Methods Appl. Sci., 25(2002), 795-
814.

[20] Y.J.Ye, Existence and asymptotic behavior of
global solutions for a class of nonlinear higher-
order wave equation, Journal of Inequalities and
Applications, 2010(2010), 1-14.

[21] Y.Zhou, Global existence and nonexistence for
a nonlinear wave equations with damping and
source term, Math. Nachr., 278(2005), 1341-
1358.

[22] Y.Zhou, Global nonexistence for a quasilinear
evolution equation with critical lower energy,
Arch. Inequal. Appl., 2 (2004), 41-47.

[23] Y.Zhou, Global nonexistence for a quasilin-
ear evolution equation with a generalized Lewis
function, Z. Anal. Anwendungen, 24 (2005),
179-187.

WSEAS TRANSACTIONS on MATHEMATICS Yaojun Ye

E-ISSN: 2224-2880 257 Volume 17, 2018




